سفارش تبلیغ
صبا ویژن
دانش خود را به نادانی و یقینتان را به شکّ تبدیل نکنید و چون دانستید، عمل کنید و چون یقین کردید، اقدام کنید . [امام علی علیه السلام]
چگونه بسازیم تا کمترین آسیب را ببینیم - زلزله شناسی
|| مدیریت || شناسنامه || پست الکترونیــک ||  RSS  ||
Link to Us!

چگونه بسازیم تا کمترین آسیب را ببینیم - زلزله شناسی

Hit
مجوع بازدیدها: 28781 بازدید

امروز: 0 بازدید

Subjects

links

Archive


سر آغاز
مهر 1384
آبان 1384
آذر 1384
بهمن 1384
فروردین 1385
اردیبهشت 1385
خرداد 1385
امرداد 1385
شهریور 1385

Search



Submit Mail

 


My Music

چگونه بسازیم تا کمترین آسیب را ببینیم

حسن شریفزاده :: شنبه 84/7/30 ساعت 9:17 صبح

Where to build

Earth scientists try to identify areas that would likely suffer great damage during an earthquake. They develop maps that show fault zones, flood plains (areas that get flooded), areas subject to landslides or to soil liquefaction, and the sites of past earthquakes. From these maps, land-use planners develop zoning restrictions that can help prevent construction of unsafe structures in earthquake-prone areas.

How to build

An earthquake-resistant building includes such structures as shear walls, a shear core, and cross-bracing. Base isolators act as shock absorbers. A moat allows the building to sway.

An earthquake-resistant building includes such structures as shear walls, a shear core, and cross-bracing. Base isolators act as shock absorbers. A moat allows the building to sway. Image credit: World Book illustration by Doug DeWitt

Engineers have developed a number of ways to build earthquake-resistant structures. Their techniques range from extremely simple to fairly complex. For small- to medium-sized buildings, the simpler reinforcement techniques include bolting buildings to their foundations and providing support walls called shear walls. Shear walls, made of reinforced concrete (concrete with steel rods or bars embedded in it), help strengthen the structure and help resist rocking forces. Shear walls in the center of a building, often around an elevator shaft or stairwell, form what is called a shear core. Walls may also be reinforced with diagonal steel beams in a technique called cross-bracing.

Builders also protect medium-sized buildings with devices that act like shock absorbers between the building and its foundation. These devices, called base isolators, are usually bearings made of alternate layers of steel and an elastic material, such as synthetic rubber. Base isolators absorb some of the sideways motion that would otherwise damage a building.

Skyscrapers need special construction to make them earthquake-resistant. They must be anchored deeply and securely into the ground. They need a reinforced framework with stronger joints than an ordinary skyscraper has. Such a framework makes the skyscraper strong enough and yet flexible enough to withstand an earthquake.

Earthquake-resistant homes, schools, and workplaces have heavy appliances, furniture, and other structures fastened down to prevent them from toppling when the building shakes. Gas and water lines must be specially reinforced with flexible joints to prevent breaking.

Safety precautions are vital during an earthquake. People can protect themselves by standing under a doorframe or crouching under a table or chair until the shaking stops. They should not go outdoors until the shaking has stopped completely. Even then, people should use extreme caution. A large earthquake may be followed by many smaller quakes, called aftershocks. People should stay clear of walls, windows, and damaged structures, which could crash in an aftershock.

People who are outdoors when an earthquake hits should quickly move away from tall trees, steep slopes, buildings, and power lines. If they are near a large body of water, they should move to higher ground. Where and why earthquakes occur

Scientists have developed a theory, called plate tectonics, that explains why most earthquakes occur. According to this theory, Earth"s outer shell consists of about 10 large, rigid plates and about 20 smaller ones. Each plate consists of a section of Earth"s crust and a portion of the mantle, the thick layer of hot rock below the crust. Scientists call this layer of crust and upper mantle the lithosphere. The plates move slowly and continuously on the asthenosphere, a layer of hot, soft rock in the mantle. As the plates move, they collide, move apart, or slide past one another.

The movement of the plates strains the rock at and near plate boundaries and produces zones of faults around these boundaries. Along segments of some faults, the rock becomes locked in place and cannot slide as the plates move. Stress builds up in the rock on both sides of the fault and causes the rock to break and shift in an earthquake.

There are three types of faults: (1) normal faults, (2) reverse faults, and (3) strike-slip faults. In normal and reverse faults, the fracture in the rock slopes downward, and the rock moves up or down along the fracture. In a normal fault, the block of rock on the upper side of the sloping fracture slides down. In a reverse fault, the rock on both sides of the fault is greatly compressed. The compression forces the upper block to slide upward and the lower block to thrust downward. In a strike-slip fault, the fracture extends straight down into the rock, and the blocks of rock along the fault slide past each other horizontally.

Most earthquakes occur in the fault zones at plate boundaries. Such earthquakes are known as interplate earthquakes. Some earthquakes take place within the interior of a plate and are called intraplate earthquakes.

Interplate earthquakes occur along the three types of plate boundaries: (1) mid-ocean spreading ridges, (2) subduction zones, and (3) transform faults.

Mid-ocean spreading ridges are places in the deep ocean basins where the plates move apart. As the plates separate, hot lava from Earth"s mantle rises between them. The lava gradually cools, contracts, and cracks, creating faults. Most of these faults are normal faults. Along the faults, blocks of rock break and slide down away from the ridge, producing earthquakes.

Near the spreading ridges, the plates are thin and weak. The rock has not cooled completely, so it is still somewhat flexible. For these reasons, large strains cannot build, and most earthquakes near spreading ridges are shallow and mild or moderate in severity.

Subduction zones are places where two plates collide, and the edge of one plate pushes beneath the edge of the other in a process called subduction. Because of the compression in these zones, many of the faults there are reverse faults. About 80 per cent of major earthquakes occur in subduction zones encircling the Pacific Ocean. In these areas, the plates under the Pacific Ocean are plunging beneath the plates carrying the continents. The grinding of the colder, brittle ocean plates beneath the continental plates creates huge strains that are released in the world"s largest earthquakes.

The world"s deepest earthquakes occur in subduction zones down to a depth of about 450 miles (700 kilometers). Below that depth, the rock is too warm and soft to break suddenly and cause earthquakes.

Transform faults are places where plates slide past each other horizontally. Strike-slip faults occur there. Earthquakes along transform faults may be large, but not as large or deep as those in subduction zones.

One of the most famous transform faults is the San Andreas Fault. The slippage there is caused by the Pacific Plate moving past the North American Plate. The San Andreas Fault and its associated faults account for most of California"s earthquakes.

Intraplate earthquakes are not as frequent or as large as those along plate boundaries. The largest intraplate earthquakes are about 100 times smaller than the largest interplate earthquakes.

Intraplate earthquakes tend to occur in soft, weak areas of plate interiors. Scientists believe intraplate quakes may be caused by strains put on plate interiors by changes of temperature or pressure in the rock. Or the source of the strain may be a long distance away, at a plate boundary. These strains may produce quakes along normal, reverse, or strike-slip faults.


نوشته های دیگران()